Source code for rlzoo.algorithms.sac.sac

"""
Soft Actor-Critic
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net
adding alpha loss
paper: https://arxiv.org/pdf/1812.05905.pdf
Actor policy is stochastic.
Env: Openai Gym Pendulum-v0, continuous action space
tensorflow 2.0.0a0
tensorflow-probability 0.6.0
tensorlayer 2.0.0
&&
pip install box2d box2d-kengz --user
"""

import time

import tensorflow_probability as tfp
import tensorlayer as tl
from rlzoo.common.utils import *
from rlzoo.common.buffer import *
from rlzoo.common.policy_networks import *
from rlzoo.common.value_networks import *

tfd = tfp.distributions
Normal = tfd.Normal

tl.logging.set_verbosity(tl.logging.DEBUG)


[docs]class SAC(): """ Soft Actor-Critic """ def __init__(self, net_list, optimizers_list, replay_buffer_capacity=5e5): self.replay_buffer = ReplayBuffer(replay_buffer_capacity) self.name = 'SAC' # get all networks [self.soft_q_net1, self.soft_q_net2, self.target_soft_q_net1, self.target_soft_q_net2, self.policy_net] = net_list assert isinstance(self.soft_q_net1, QNetwork) assert isinstance(self.soft_q_net2, QNetwork) assert isinstance(self.target_soft_q_net1, QNetwork) assert isinstance(self.target_soft_q_net2, QNetwork) assert isinstance(self.policy_net, StochasticPolicyNetwork) assert isinstance(self.policy_net.action_space, gym.spaces.Box) self.action_dim = self.policy_net.action_shape[0] self.log_alpha = tf.Variable(0, dtype=np.float32, name='log_alpha') self.alpha = tf.math.exp(self.log_alpha) print('Soft Q Network (1,2): ', self.soft_q_net1) print('Policy Network: ', self.policy_net) # initialize weights of target networks self.target_soft_q_net1 = self.target_ini(self.soft_q_net1, self.target_soft_q_net1) self.target_soft_q_net2 = self.target_ini(self.soft_q_net2, self.target_soft_q_net2) [self.soft_q_optimizer1, self.soft_q_optimizer2, self.policy_optimizer, self.alpha_optimizer] = optimizers_list
[docs] def evaluate(self, state, epsilon=1e-6): """ generate action with state for calculating gradients """ _ = self.policy_net(state) mean, log_std = self.policy_net.policy_dist.get_param() # as SAC uses TanhNorm instead of normal distribution, need original mean_std std = tf.math.exp(log_std) # no clip in evaluation, clip affects gradients flow normal = Normal(0, 1) z = normal.sample(mean.shape) action_0 = tf.math.tanh(mean + std * z) # TanhNormal distribution as actions; reparameterization trick # according to original paper, with an extra last term for normalizing different action range log_prob = Normal(mean, std).log_prob(mean + std * z) - tf.math.log(1. - action_0 ** 2 + epsilon) # both dims of normal.log_prob and -log(1-a**2) are (N,dim_of_action); # the Normal.log_prob outputs the same dim of input features instead of 1 dim probability, # needs sum up across the dim of actions to get 1 dim probability; or else use Multivariate Normal. log_prob = tf.reduce_sum(log_prob, axis=1)[:, np.newaxis] # expand dim as reduce_sum causes 1 dim reduced action = action_0 * self.policy_net.policy_dist.action_scale + self.policy_net.policy_dist.action_mean return action, log_prob, z, mean, log_std
[docs] def get_action(self, state): """ generate action with state for interaction with envronment """ action, _, _, _, _ = self.evaluate(np.array([state])) return action.numpy()[0]
[docs] def get_action_greedy(self, state): """ generate action with state for interaction with envronment """ mean = self.policy_net(np.array([state]), greedy=True).numpy()[0] action = tf.math.tanh(mean) * self.policy_net.policy_dist.action_scale + self.policy_net.policy_dist.action_mean return action
[docs] def sample_action(self, ): """ generate random actions for exploration """ return self.policy_net.random_sample()
[docs] def target_ini(self, net, target_net): """ hard-copy update for initializing target networks """ for target_param, param in zip(target_net.trainable_weights, net.trainable_weights): target_param.assign(param) return target_net
[docs] def target_soft_update(self, net, target_net, soft_tau): """ soft update the target net with Polyak averaging """ for target_param, param in zip(target_net.trainable_weights, net.trainable_weights): target_param.assign( # copy weight value into target parameters target_param * (1.0 - soft_tau) + param * soft_tau ) return target_net
[docs] def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99, soft_tau=1e-2): """ update all networks in SAC """ state, action, reward, next_state, done = self.replay_buffer.sample(batch_size) reward = reward[:, np.newaxis] # expand dim done = done[:, np.newaxis] reward = reward_scale * (reward - np.mean(reward, axis=0)) / ( np.std(reward, axis=0) + 1e-6) # normalize with batch mean and std # Training Q Function new_next_action, next_log_prob, _, _, _ = self.evaluate(next_state) target_q_min = tf.minimum( self.target_soft_q_net1([next_state, new_next_action]), self.target_soft_q_net2([next_state, new_next_action]) ) - self.alpha * next_log_prob target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward with tf.GradientTape() as q1_tape: predicted_q_value1 = self.soft_q_net1([state, action]) q_value_loss1 = tf.reduce_mean(tf.losses.mean_squared_error(predicted_q_value1, target_q_value)) q1_grad = q1_tape.gradient(q_value_loss1, self.soft_q_net1.trainable_weights) self.soft_q_optimizer1.apply_gradients(zip(q1_grad, self.soft_q_net1.trainable_weights)) with tf.GradientTape() as q2_tape: predicted_q_value2 = self.soft_q_net2([state, action]) q_value_loss2 = tf.reduce_mean(tf.losses.mean_squared_error(predicted_q_value2, target_q_value)) q2_grad = q2_tape.gradient(q_value_loss2, self.soft_q_net2.trainable_weights) self.soft_q_optimizer2.apply_gradients(zip(q2_grad, self.soft_q_net2.trainable_weights)) # Training Policy Function with tf.GradientTape() as p_tape: new_action, log_prob, z, mean, log_std = self.evaluate(state) """ implementation 1 """ predicted_new_q_value = tf.minimum(self.soft_q_net1([state, new_action]), self.soft_q_net2([state, new_action])) """ implementation 2 """ # predicted_new_q_value = self.soft_q_net1([state, new_action]) policy_loss = tf.reduce_mean(self.alpha * log_prob - predicted_new_q_value) p_grad = p_tape.gradient(policy_loss, self.policy_net.trainable_weights) self.policy_optimizer.apply_gradients(zip(p_grad, self.policy_net.trainable_weights)) # Updating alpha w.r.t entropy # alpha: trade-off between exploration (max entropy) and exploitation (max Q) if auto_entropy is True: with tf.GradientTape() as alpha_tape: alpha_loss = -tf.reduce_mean((self.log_alpha * (log_prob + target_entropy))) alpha_grad = alpha_tape.gradient(alpha_loss, [self.log_alpha]) self.alpha_optimizer.apply_gradients(zip(alpha_grad, [self.log_alpha])) self.alpha = tf.math.exp(self.log_alpha) else: # fixed alpha self.alpha = 1. alpha_loss = 0 # Soft update the target value nets self.target_soft_q_net1 = self.target_soft_update(self.soft_q_net1, self.target_soft_q_net1, soft_tau) self.target_soft_q_net2 = self.target_soft_update(self.soft_q_net2, self.target_soft_q_net2, soft_tau)
[docs] def save_ckpt(self, env_name): """ save trained weights """ save_model(self.soft_q_net1, 'model_q_net1', self.name, env_name) save_model(self.soft_q_net2, 'model_q_net2', self.name, env_name) save_model(self.target_soft_q_net1, 'model_target_q_net1', self.name, env_name) save_model(self.target_soft_q_net2, 'model_target_q_net2', self.name, env_name) save_model(self.policy_net, 'model_policy_net', self.name, env_name)
[docs] def load_ckpt(self, env_name): """ load trained weights """ load_model(self.soft_q_net1, 'model_q_net1', self.name, env_name) load_model(self.soft_q_net2, 'model_q_net2', self.name, env_name) load_model(self.target_soft_q_net1, 'model_target_q_net1', self.name, env_name) load_model(self.target_soft_q_net2, 'model_target_q_net2', self.name, env_name) load_model(self.policy_net, 'model_policy_net', self.name, env_name)
[docs] def learn(self, env, train_episodes=1000, test_episodes=1000, max_steps=150, batch_size=64, explore_steps=500, update_itr=3, policy_target_update_interval=3, reward_scale=1., save_interval=20, mode='train', AUTO_ENTROPY=True, render=False, plot_func=None): """ :param env: learning environment :param train_episodes: total number of episodes for training :param test_episodes: total number of episodes for testing :param max_steps: maximum number of steps for one episode :param batch_size: udpate batchsize :param explore_steps: for random action sampling in the beginning of training :param update_itr: repeated updates for single step :param policy_target_update_interval: delayed update for the policy network and target networks :param reward_scale: value range of reward :param save_interval: timesteps for saving the weights and plotting the results :param mode: 'train' or 'test' :param AUTO_ENTROPY: automatically updating variable alpha for entropy :param render: if true, visualize the environment :param plot_func: additional function for interactive module """ # training loop if mode == 'train': print('Training... | Algorithm: {} | Environment: {}'.format(self.name, env.spec.id)) frame_idx = 0 rewards = [] t0 = time.time() for eps in range(train_episodes): state = env.reset() episode_reward = 0 for step in range(max_steps): if frame_idx > explore_steps: action = self.get_action(state) else: action = self.sample_action() next_state, reward, done, _ = env.step(action) if render: env.render() done = 1 if done == True else 0 self.replay_buffer.push(state, action, reward, next_state, done) state = next_state episode_reward += reward frame_idx += 1 if len(self.replay_buffer) > batch_size: for i in range(update_itr): self.update( batch_size, reward_scale=reward_scale, auto_entropy=AUTO_ENTROPY, target_entropy=-1. * self.action_dim ) if done: break if eps % int(save_interval) == 0: plot_save_log(rewards, algorithm_name=self.name, env_name=env.spec.id) self.save_ckpt(env_name=env.spec.id) print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}' \ .format(eps, train_episodes, episode_reward, time.time() - t0)) rewards.append(episode_reward) if plot_func is not None: plot_func(rewards) plot_save_log(rewards, algorithm_name=self.name, env_name=env.spec.id) self.save_ckpt(env_name=env.spec.id) elif mode == 'test': frame_idx = 0 rewards = [] t0 = time.time() self.load_ckpt(env_name=env.spec.id) print('Testing... | Algorithm: {} | Environment: {}'.format(self.name, env.spec.id)) # set test mode self.soft_q_net1.eval() self.soft_q_net2.eval() self.target_soft_q_net1.eval() self.target_soft_q_net2.eval() self.policy_net.eval() for eps in range(test_episodes): state = env.reset() episode_reward = 0 for step in range(max_steps): action = self.get_action_greedy(state) next_state, reward, done, _ = env.step(action) if render: env.render() done = 1 if done == True else 0 state = next_state episode_reward += reward frame_idx += 1 if done: break print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}' \ .format(eps, test_episodes, episode_reward, time.time() - t0)) rewards.append(episode_reward) if plot_func: plot_func(rewards) else: print('unknow mode type')